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Upper and lower bounds to quantum-mechanical sum rules 
F. WEINHOLD? 
Mathematical Institute, Oxford 
MS. received 17th June 1968 

Abstract. It  is pointed out that when a set of sum rules S(K) are composed into 
an array S with elements Sf! = S(i+j), the resulting matrix S has no negative 
eigenvalues. This property often permits one to give rigorous upper and/or lower 
bounds to the true value of a particular sum rule when values of other sum rules 
are known. In  certain cases the bounds are identical with those obtained recently by 
Gordon using a generalized theory of Gaussian integration. The technique is illus- 
trated by an application to oscillator strength sum rules in the ground state of the 
hydrogen atom and the negative hydrogen ion, and finally it is shown how any 
available information about individual oscillator strengths can be applied to further 
improve the bounds. 

1. Introduction: positivity of the metric matrix 
For the determination of upper and lower bounds to sum rules it is useful to appeal 

to some elementary notions of geometry in n-dimensional Euclidean vector spaces, and 
we accordingly review some basic results for the sake of completeness. 

It is often profitable to regard objects lai)  as vectors whenever it is possible to define a 
scalar product ( a i l a j )  having the following fundamental properties : 

( l . l a )  

(1.lb) 

( l . l c )  

I t  will then be possible to represent the \ a i ) ,  i = 1,2,  ..., n, as ordinary column vectors in a 
Euclidean space E, of n dimensions, and to manipulate them according to familiar rules. 

Consider the matrix A whose columns are the vectors la,), \a2) ,  ..., la,). Then the 
metric (overlap) matrix S with elements (S)ij = ( a i J a j )  may be written in the form 

S = AtA (1.2) 
where A' is the Hermitian adjoint of A. From the form of (1.2) it is clear that the metric 
matrix is positive (semi-) definite, since, for any vector Ix), 

( x ~ S ~ X )  = (xIA'AIx) = (AxIAx)  > 0 

according to ( 1 . 1 ~ ) .  Thus S certainly has no negative eigenvalues and, in particular, 

G = det /SI 0 ( 1  3) 

where G is also called the Gramian determinant (see, e.g., Bellman 1960, p. 46) of the 
vectors la,). G is actually the squared volume of the parallelopiped spanned by the vectors 
\ a i ) ,  and, hence, is clearly non-negative, being zero only when the vectors become linearly 
dependent. 

Since the positivity of the metric matrix is the necessary and sufficient condition for 
the existence of vectors having the required lengths and inner products, it is the strongest 
possible restriction that can be placed on the value of any one matrix element if the only 
information available is given by the values of the other matrix elements of S. 
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2. Application to sum rules 
For the application to sum rules S(k)  (see, e.g., Hirschfelder et al. 1964) 

m 

S(k) = 2 f o 4 E ' n  -Eo)k 
71 = 1 

we may assume for specificity that the N-electron system described by H$l = Et$, is 
perturbed in its ground state by an external electric field, so thatf,, is the familiar oscillator 
strength for dipole transitions from state $o to state $n 

N 

though it will be clear that the application to other types of perturbation is immediate. 
The  summation sign in (2.1) denotes summation over the discrete states and an integration 
over the photoionization continuum. 

The  oscillator strengths are intrinsically positive, and for our purposes it is only necessary 
to remark that (2.1) may be written in the form (see also Gordon 1968 b, c) 

m 

S(k)  = 1 wk4(w)dw (2.3) 

s:, 

oil 

where the distribution function 4 ( w )  is non-negative and where w ,  = E,-Eo. We may 
then formally introduce the function x(w) satisfying x*(w)x(w) = +(U) and adopt the 
integral (2.3) as the scalar product for the system of 'vectors' w"lx> 

( w n x I u m x )  = ~ * ( w ) w ' + ~ x ( w ) d w  = S(n+m) (2.4) 

which has all the properties required by (l.la-c). Thus, according to (2.4), the metric 
matrix S of this system is just an array of sum rules, and the non-negativity of this array 
will impose upper and/or lower bounds on the numerical value of any particular S(k) if 
values are known for all other elements of the sum rule array. 

Actually the positivity of the array S 

(As)?, = s,, = S( i+j )  
may be directly established without referring to any properties of the square root function 
x, since 

(x[Slx)  = 2 2 x,xiSij  = 2 2 xixi 1 wiwwl#(w) dw 
i J  i i  

a 

but it is often useful to keep the geometrical argument in mind. 

3. Explicit formulae for simple cases 

inequalityt 

where we have again used the notation Sii 7 S ( i + j )  for the sum rules. In  all the 
formulae of this section the indices i, j ,  k, .,. will be understood to be all integer or all 

t For i = - 1, j = 0 this inequality is closely related to the Kirkwood-Vinti approximation to the 
polarizability (Kirkwood 1932, Vinti 1932), since Sjj then becomes simply the number of electrons 
according to the Thomas-Reiche-Kuhn sum rule. 

The  simplest of our bounds, corresponding to a 2 x 2 metric matrix, is the Schwarz 

si, 2 ~ ~ 1 2 / S I ~  
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G = S( i+ j )  S(2j) S(j+K) 2 0 
S( i+K)  S( j+k)  S(2K) 

while for the off-diagonal element Si, solution of the quadratic equation G = 0 gives 
the upper and lower bounds 

(3.2) 
6 lSlkSjk  __ {(stts,'ck - s % k z ) ( s j ~ s k k  -sjk2))112 

SL, > 
S k k  

Finally for the case i + K  = 2j, where the element to be bounded occurs three times in 
the matrix S, upper and lower bounds for s , k  are found as the roots of the cubic equation 
G = 0. First find the two largest roots x,, xg of the equation 

(3.3b) 

The 4 x 4 array requires values of from 6 to 9 of the S(K) and will therefore be of more 
limited general applicability. The  upper/lower bounds are obtained as solutions of the 
linear, quadratic, cubic, or quartic equation G = 0 according to the number of times the 
element to be bounded appears in G. Since it may be computationally more convenient 
to obtain these roots numerically, the explicit formulae are not included here, although 
an application is presented in $ 5 .  

4. Gordon's error bounds 
Recently Gordon (1968 a, b, c) has developed a powerful set of techniques based on the 

generalized theory of Gaussian integration for determining error limits to various quantum- 
and statistical-mechanical properties. Of particular interest for our purposes is his treatment 
of the second-order perturbation energies (Gordon 1968 b) and the associated long-range 
(van der Waals-London dispersion) forces between atoms (Gordon 1968 c). 

In  Gordon's approach one considers a certainpositive distribution +(U) and the associated 
moments pk defined by 

Then the quantity of interest I = Jf(u)+(u) du, where f is a known function, is approxi- 
mated by the M-point quadrature formula 

I = l  

where the remainder term R actually vanishes iff is a polynomial of degree 2 M -  1 or less. 
The  kl' quadrature points ti and weights w, can be determined whenever the first 21W 
moments p k  (k = 0 ,  1, 2, ..., 2M-  1) are known, and for this purpose a practical computa- 
tional algorithm has been described (Gordon 1968 a). In  several interesting cases the 
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sign of the remainder R is known, and the sum 
M 

2 W i f  (5 , )  
i = 1  

furnishes then a rigorous upper or lower bound to the true value of I. 
Particularly for the distribution of oscillator strengths, Gordon has given lower bounds 

to the polarizability U by noting that the sum rules S(k) furnish the required moments pie 
for the application of his technique. Since the zero-frequency polarizability U ( U  = 0) is, 
in atomic units, just the sum rule S( - 2), and since both Gordon’s bounds and our formulae 
of 5 3 provide the best possible lower bound for this quantity for the amount of information 
employed, it is clear that these two (seemingly dissimilar) approaches must actually give 
the same result when they use values of the same sum rules S(k) ,  as a simple calculation 
confirms. 

In  other applications the two bounding techniques may give complementary information. 
For example, the formulae of 5 3 can furnish bounds for intermediate S(k) in terms of 
those of both higher and lower k values, whereas Gordon’s formulae require an uninter- 
rupted sequence of these moments. On the other hand, our approach does not give bounds 
on, for example, the frequency-dependent polarizability, as Gordon was able to obtain. 

5. Numerical illustrations 
We shall illustrate the bounds of 5 3 by some simple applications to small systems for 

which accurate values of the sum rules are known. 
For the hydrogen atom the oscillator strength sum rules have been evaluated explicitly 

by Dalgarno and Kingston (1960). Choosing, for example, the polarizability sum rule 
S( - 2) = U, and using only 2 x 2 arrays of the sum rules S(2)-S( - 6) (except, of course, 
S( - 2) itself) we obtain 

M = 4.49 & 0.15 aO3 

which may be compared with the exact answer tl = 4.5 aO3. Using 3 x 3 arrays we obtain 
the results given in table 1 (notice that ( a )  is identical with Gordon’s result), and from (k) 
and ( 1 )  we conclude 

If we go to 4 x 4 arrays we obtain the still stronger result 

M = 4.498 k 0.010 aO3. 

tl = 4.5005 & 0.0016 aO3 
and, still using only the sum rules S(2)-S( - 6), we could improve this result even further 
by using a 5 x 5 Gramian and solving the resulting quintic equation. However, the examples 
given above may be sufficient to indicate the accuracy of which the method is capable. 

For the negative hydrogen ion H-, values of S(k)  for 2 2 K 2 -3  may be obtained 
from the calculations of Pekeris (1962) and the compilation of Dalgarno and Ewart (1962)t. 
Using S(2)-S( - 1) in (3.1) we obtain the lower bound 

CI. 2 !24aO3 

which is already sufficient to rule out the values 91 or 101 calculated by the Sternheimer 
procedure (see Dalgarno 1962). Including S( - 3) and using (3.2) we obtain 

CI. < 229aO3 

which may be compared with the value U = 212k8  quoted by Dalgarno and Ewart. 
Finally we may use a 4 x 4 Gramian to give a lower bound for the (unknown) value of 

S( -4) 2 8.13 x 1 0 4 ~ . r r .  
S(-4): 

though this is to some extent subject to the uncertainties in the other sum rules. 
t The values of S(2) and S(1) given by Dalgarno and Ewart appear to be in error. The actual 

values used here are as follows (all in A.u.): S(2) = 1.379, S(l)  = 0,7475, S(0) = 2 ,  S( -1) =14.969, 
S( - 2 )  = 212, S( - 3 )  = 4000. 
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Table 1. Upper and lower bounds for the oscillator strength sum rule S( -2), 
the dipole polarizability, in the hydrogen atom ground state, as calculated 

from the formulae of 8 3 

Formula 

3.1 
3.1 
3.1 
3.1 
3.2 
3.2 
3.2 
3.2 
3.2 
3.2 
3.2 
3.3 
3.3 

i 

-1 
-1 
-1 
-1 

0 
1 

-2 
-3 

3 
-Q 

- 8  
0 
1 

j 

0 
0 
1 

-2 
-2 
-3 

0 
1 

- #  
-4 
- 3  
-1 
-1 

Lower 
k bound 

1 4.125 
-3 4.456 
-2 4.378 
-3 4.485 
-3 3.841 

0 0.072 
1 (-2,965) 

-2 3,353 - +  4,124 
3 1.45 9 

- %  4,001 
-2 4.487 
-3 4.204 

Upper 
bound 

- 
4.546 

14.261 
4.965 

6.626 
4.541 
4.508 
5,137 

14.314 

6.755 

6. Improving the sum rule bounds 
It is clear that the most effective way of improving our sum rule bounds is to have 

values of as many of the S(k) as possible, particularly for values of 12 distributed around the 
value to be bounded. However, for practical purposes it is even more important that 
partial information about individual oscillator strengths can be brought to bear in improving 
the calculated bounds. 

Suppose then that oscillator strengths fon and the associated excitation frequencies 
E,- Eo are known, either from experiment or from careful calculations, for the p - 1 
lowest-lying excited states of the system. Then for each k the contribution S’(12) from this 
set of states to the sum rule S(k) may be evaluated explicitly: 

P - 1  

S’@) = 2 f o n ( E n - E * ) k  
n = l  

while for the residual sum rule S”(12) S(12) - S’(12) we may write in place of (2.3) 
m 

S”(12) = 1 wk+(w) d o  (6.1) 
U P  

and proceed as before to place upper and lower bounds on the residues S”(k). 
Indeed, in place of (2.3) or (6.1) we might take, for example, the still more general form 

CO 

S”(k) = wk+(w) d o  + ok+4(~) dw 

where the interval between wp and wq may contain one or more bound states or even a 
band of the continuum for which the contribution to the sum rule has been evaluated 
explicitly. All the results of 9 3 apply intact to these residual sum rules, and one may 
expect the bounds obtained in this fashion to be an important practical improvement. In  
a similar manner one may extend these bounds to excited state sum rules if oscillator strengths 
to all the lower-lying states have been evaluated. 
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